Home

Research Works


How Far is Video Generation from World Model: A Physical Law Perspective
Bingyi Kang, Yang Yue, Rui Lu, Zhijie Lin, Yang Zhao, Kaixin Wang, Gao Huang, Jiashi Feng
arXiv 2024
site  /  arXiv  /  code
Implicit Curriculum in Procgen Made Explicit
Zhenxiong Tan*, Kaixin Wang*, Xinchao Wang
NeurIPS 2024
code
Improving Token-Based World Models with Parallel Observation Prediction
Lior Cohen, Kaixin Wang, Bingyi Kang, Shie Mannor
ICML 2024
arXiv  /  code
Bring Your Own (Non-Robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel
Uri Gadot*, Kaixin Wang*, Navdeep Kumar, Kfir Y. Levy, Shie Mannor
ICML 2024
arXiv  /  code
Efficient Value Iteration for s-rectangular Robust Markov Decision Processes
Navdeep Kumar, Kaixin Wang, Kfir Y. Levy, Shie Mannor
ICML 2024
arXiv
PPG Reloaded: An Empirical Study on What Matters in Phasic Policy Gradient
Kaixin Wang, Daquan Zhou, Jiashi Feng, Shie Mannor
ICML 2023
Reachability-Aware Laplacian Representation in Reinforcement Learning
Kaixin Wang*, Kuangqi Zhou*, Jiashi Feng, Bryan Hooi, Xinchao Wang
ICML 2023
arXiv
Revisiting Intrinsic Reward for Exploration in Procedurally Generated Environments
Kaixin Wang, Kuangqi Zhou, Bingyi Kang, Jiashi Feng, Shuicheng Yan
ICLR 2023
Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction
Kuangqi Zhou, Kaixin Wang, Jian Tang, Jiashi Feng, Bryan Hooi, Peilin Zhao, Tingyang Xu, Xinchao Wang
LoG 2022
Relational Reasoning via Set Transformers: Provable Efficiency and Applications to MARL
Fengzhuo Zhang, Boyi Liu, Kaixin Wang, Vincent Y. F. Tan, Zhuoran Yang, Zhaoran Wang
NeurIPS 2022
arXiv
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction
Kuangqi Zhou, Kaixin Wang, Jiashi Feng, Jian Tang, Tingyang Xu, Xinchao Wang
arXiv 2022
arXiv
Policy Gradient for Reinforcement Learning with General Utilities
Navdeep Kumar, Kaixin Wang, Kfir Levy, Shie Mannor
RLDM 2022
arXiv
The Geometry of Robust Value Functions
Kaixin Wang, Navdeep Kumar, Kuangqi Zhou, Bryan Hooi, Jiashi Feng, Shie Mannor
ICML 2022
arXiv  /  presentation
Understanding and Resolving Performance Degradation in Graph Convolutional Networks
Kuangqi Zhou*, Yanfei Dong*, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, Jiashi Feng
CIKM 2021
arXiv  /  code  /  presentation
Towards Better Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing
Kaixin Wang*, Kuangqi Zhou*, Qixin Zhang, Jie Shao, Bryan Hooi, Jiashi Feng
ICML 2021
arXiv  /  code (coming soon)  /  presentation
Improving Generalization in Reinforcement Learning with Mixture Regularization
Kaixin Wang, Bingyi Kang, Jie Shao, Jiashi Feng
NeurIPS 2020
arXiv  /  code  /  site  /  presentation
Neural Epitome Search for Architecture-Agnostic Network Compression
Daquan Zhou, Xiaojie Jin, Qibin Hou, Kaixin Wang, Jianchao Yang, Jiashi Feng
ICLR 2020
arXiv  /  code  /  presentation
PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, Jiashi Feng
ICCV 2019
arXiv  /  code  /  presentation